Effect of type of pretreatment and enzyme on antioxidant capacity of hydrolyzed protein of edible mushroom (Agaricus bisporus)

Document Type : Research Paper


1 MSc Student of the Department of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.

2 Professor of the Department of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.


Introduction: Free radicals originate from oxidation reactions decrease food quality and also promote incidence of various diseases such as cancer.
Materials and Methods: In this research the effect of four enzymes, alcalase, trypsin, pepsin, and pancreatin, without pretreatment and with microwave and ultrasound pretreatment under optimal hydrolysis conditions on the antioxidant capacity of edible mushroom hydrolyzed protein was compared. The hydrolysis process to reach the maximum antioxidant activity with a ratio of enzyme to substrate of 1% and at the optimum temperature of each enzyme with and without microwave and ultrasound pretreatment and ultrasound pretreatment with 160W power, then hydrolysis with enzyme was done in 60 minutes and for samples without pretreatment, hydrolysis time was 120 minutes for each enzyme.
Results: The results showed that the highest amount of total antioxidant capacity was 1.64 with hydrolysis by pepsin enzyme, the highest reducing power of iron ion was 2.80 with hydrolysis by alcalase enzyme. The highest iron ion chelation power of 65.08% was achieved with hydrolysis by trypsin enzyme and the highest DPPH free radical inhibition activity of 80.57% with hydrolysis by pepsin enzyme, all in the samples pre-treated with 160W ultrasound in the hydrolysis time of 60 minutes.
Conclusions: The results showed that in order to create the desired antioxidant properties in the hydrolyzed protein obtained from edible mushrooms, a special combination of hydrolyzing enzyme and pretreatment should be used, and ultrasound pretreatment is more effective than microwave in this field. formulations.


Aderinola, T.A., Fagbemi, T.N., Enujiugha, V.N., Alashi, A.M. & Aluko, R.E. (2019). In vitro antihypertensive and antioxidative properties of alcalase‐derived Moringa oleifera seed globulin hydrolysate and its membrane fractions. Journal of Food Processing and Preservation, 43(2), p.e13862.
Ambigaipalan, P. & Shahidi, F. (2017). Bioactive peptides from shrimp shell processing discards: Antioxidant and biological activities. Journal of Functional Foods, 34, pp.7-17.
Banik, S.B.A.S.G.S., Bandyopadhyay, S. & Ganguly, S. (2003). Bioeffects of microwave––a brief review. Bioresource Technology, 87(2), pp.155-159.
Beermann, C., Euler, M., Herzberg, J. & Stahl, B. (2009). Anti-oxidative capacity of enzymatically released peptides from soybean protein isolate. European Food Research and Technology, 229 (4), pp.637-644.
Bhat, Z. F., Kumar, S. & Bhat, H. F. (2015). Bioactive peptides of animal origin: a review. Journal of Food Science and Technology, 52(9), 5377-5392.
Bougatef, A., Hajji, M., Balti, R., Lassoued, I., Triki-Ellouz, Y. & Nasri, M. (2009). Antioxidant and free radical-scavenging activities of smooth hound (Mustelus mustelus) muscle protein hydrolysates obtained by gastrointestinal proteases. Food Chemistry, 114(4), pp.1198-1205.
Chai, T.T., Tong, S.R., Law, Y.C., Ismail, N.I.N., Manan, F.A. & Wong, F.C. (2015). Anti-oxidative, metal chelating and radical scavenging effects of protein hydrolysates from blue-spotted stingray. Tropical Journal of Pharmaceutical Research, 14(8), pp.1349-1355.
Chandrapala, J., Oliver, C., Kentish, S. & Ashokkumar, M. (2012). Ultrasonics in food processing. Ultrasonics Sonochemistry, 19(5), pp.975-983.
Chen, L., Chen, J., Ren, J. & Zhao, M. (2011). Effects of ultrasound pretreatment on the enzymatic hydrolysis of soy protein isolates and on the emulsifying properties of hydrolysates. Journal of Agricultural and Food Chemistry, 59(6), pp.2600-2609.
Chi, C.F., Hu, F.Y., Wang, B., Li, T. & Ding, G.F. (2015). Antioxidant and anticancer peptides from the protein hydrolysate of blood clam (Tegillarca granosa) muscle. Journal of Functional Foods, 15, pp.301-313.
Chian, F.M., Kaur, L., Oey, I., Astruc, T., Hodgkinson, S. & Boland, M. (2019). Effect of Pulsed Electric Fields (PEF) on the ultrastructure and in vitro protein digestibility of bovine longissimus thoracis. LWT-Food Science and Technology, 103, pp.253-259.
Choonpicharn, S., Jaturasitha, S., Rakariyatham, N., Suree, N. & Niamsup, H. (2015). Antioxidant and antihypertensive activity of gelatin hydrolysate from Nile tilapia skin. Journal of Food Science and Technology, 52(5), pp.3134-3139.
Dasgupta, N. & De, B. (2007). Antioxidant activity of some leafy vegetables of India: A comparative study. Food Chemistry, 101(2), pp.471-474.
Ding, Q., Zhang, T., Niu, S., Cao, F., Wu-Chen, R.A., Luo, L. & Ma, H. (2018). Impact of ultrasound pretreatment on hydrolysate and digestion products of grape seed protein. Ultrasonics Sonochemistry, 42, pp.704-713.
Farzaneh, P., Khanahamadi, M., Ehsani, M.R. & Sharifan, A. (2018). Bioactive properties of Agaricus bisporus and Terfezia claveryi proteins hydrolyzed by gastrointestinal proteases. LWT-Food Science and Technology, 91, pp.322-329.
Fu, Y. & Zhao, X.H. (2015). Utilization of chum salmon (Oncorhynchus keta) skin gelatin hydrolysates to attenuate hydrogen peroxide-induced oxidative injury in rat hepatocyte BRL cell model. Journal of Aquatic Food Product Technology, 24(7), pp.648-660.
Gao, C., Wang, F., Yuan, L., Liu, J., Sun, D. & Li, X. (2019). Physicochemical property, antioxidant activity, and cytoprotective effect of the germinated soybean proteins. Food Science & Nutrition, 7(1), pp.120-131.
Gao, D., Cao, Y. & Li, H. (2010). Antioxidant activity of peptide fractions derived from cottonseed protein hydrolysate. Journal of the Science of Food and Agriculture, 90(11), pp.1855-1860.
Gazikalović, I., Mijalković, J., Šekuljica, N., Jakovetić Tanasković, S., Đukić Vuković, A., Mojović, L. & Knežević-Jugović, Z. (2021). Synergistic Effect of Enzyme Hydrolysis and Microwave Reactor Pretreatment as an Efficient Procedure for Gluten Content Reduction. Foods, 10(9), p.2214.
He, J.Z., Ru, Q.M., Dong, D.D. & Sun, P.L. (2012). Chemical characteristics and antioxidant properties of crude water soluble polysaccharides from four common edible mushrooms. Molecules, 17(4), pp.4373-4387.
Horwitz, W., Chichilo, P. & Reynolds, H. (1970). Official methods of analysis of the Association of Official Analytical Chemists. Official methods of analysis of the Association of Official Analytical Chemists.
Jamdar, S.N., Rajalakshmi, V., Pednekar, M.D., Juan, F., Yardi, V. & Sharma, A. (2010). Influence of degree of hydrolysis on functional properties, antioxidant activity and ACE inhibitory activity of peanut protein hydrolysate. Food Chemistry, 121(1), 178-184.
Janakat, S., Al‐Fakhiri, S. & Sallal, A.K. (2004). A promising peptide antibiotic from Terfezia claveryi aqueous extract against Staphylococcus aureus in vitro. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 18(10), 810-813.
Jang, H.L., Shin, S.R. & Yoon, K.Y. (2017). Hydrolysis conditions for antioxidant peptides derived from enzymatic hydrolysates of sandfish (Arctoscopus japonicus). Food Science and Biotechnology, 26(5), 1191-1197.
Je, J.Y., Qian, Z.J., Byun, H.G. & Kim, S.K. (2017). Purification and characterization of an antioxidant peptide obtained from tuna backbone protein by enzymatic hydrolysis. Process Biochemistry, 42(5), 840-846.
Jia, J., Ma, H., Zhao, W., Wang, Z., Tian, W., Luo, L. & He, R. (2010). The use of ultrasound for enzymatic preparation of ACE-inhibitory peptides from wheat germ protein. Food Chemistry, 119(1), 336-342.
Kadam, S.U., Tiwari, B.K., Álvarez, C. & O'Donnell, C.P. (2015). Ultrasound applications for the extraction, identification and delivery of food proteins and bioactive peptides. Trends in Food Science & Technology, 46(1), 60-67.
Karamać, M., Kosińska-Cagnazzo, A. & Kulczyk, A. (2016). Use of different proteases to obtain flaxseed protein hydrolysates with antioxidant activity. International Journal of Molecular Sciences, 17(7), p.1027.
Ketnawa, S. & Liceaga, A.M. (2017). Effect of microwave treatments on antioxidant activity and antigenicity of fish frame protein hydrolysates. Food and Bioprocess Technology, 10(3), 582-591.
Khantaphant, S., Benjakul, S. & Ghomi, M.R. (2011). The effects of pretreatments on antioxidative activities of protein hydrolysate from the muscle of brownstripe red snapper (Lutjanus vitta). LWT-Food Science and Technology, 44(4), 1139-1148.
Kimatu, B.M., Zhao, L., Biao, Y., Ma, G., Yang, W., Pei, F. & Hu, Q. (2017). Antioxidant potential of edible mushroom (Agaricus bisporus) protein hydrolysates and their ultrafiltration fractions. Food Chemistry, 230, 58-67.
Klompong, V., Benjakul, S., Kantachote, D. & Shahidi, F. (2007). Antioxidant activity and functional properties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis) as influenced by the degree of hydrolysis and enzyme type. Food Chemistry, 102, 1317-1327.
Ko, J.Y., Lee, J.H., Samarakoon, K., Kim, J.S. & Jeon, Y.J. (2013). Purification and determination of two novel antioxidant peptides from flounder fish (Paralichthys olivaceus) using digestive proteases. Food and Chemical Toxicology, 52, 113-120.
Korhonen, H. & Pihlanto, A. (2006). Bioactive peptides: production and functionality. International Dairy Journal, 16(9), 945-960.
Li, X., Da, S., Li, C., Xue, F. & Zang, T. (2018). Effects of high‐intensity ultrasound pretreatment with different levels of power output on the antioxidant properties of alcalase hydrolyzates from Quinoa (Chenopodium quinoa Willd.) protein isolate. Cereal Chemistry, 95(4), 518-526.
Li, X., Luo, Y., Shen, H. & You, J. (2012). Antioxidant activities and functional properties of grass carp (Ctenopharyngodon idellus) protein hydrolysates. Journal of the Science of Food and Agriculture, 92(2), 292-298.
Liang, Q., Ren, X., Ma, H., Li, S., Xu, K. & Oladejo, A.O. (2017). Effect of low-frequency ultrasonic-assisted enzymolysis on the physicochemical and antioxidant properties of corn protein hydrolysates. Journal of Food Quality, Volume 2017, Article ID 2784146.
Liu, X., Zheng, X., Song, Z., Liu, X., kumar Kopparapu, N., Wang, X. & Zheng, Y. (2015). Preparation of enzymatic pretreated corn gluten meal hydrolysate and in vivo evaluation of its antioxidant activity. Journal of Functional Foods, 18, 1147-1157.
Mahroug, H., Ribeiro, M., Rhazi, L., Bentallah, L., Zidoune, M.N., Nunes, F.M. & Igrejas, G. (2019). How microwave treatment of gluten affects its toxicity for celiac patients? A study on the effect of microwaves on the structure, conformation, functionality and immunogenicity of gluten. Food Chemistry, 297, p.124986.
Matmaroh, K., Benjakul, S., Prodpran, T., Encarnacion, A. B. & Kishimura, H. (2011). Characteristics of acid soluble collagen and pepsin soluble collagen from scale of spotted golden goatfish (Parupeneus heptacanthus). Food Chemistry, 129(3), 1179-1186.
Megías, C., Pedroche, J., Yust, M. M., Girón-Calle, J., Alaiz, M., Millán, F. & Vioque, J. (2008). Production of copper-chelating peptides after hydrolysis of sunflower proteins with pepsin and pancreatin. LWT-Food Science and Technology, 41(10), 1973-1977.
Mine, Y., Li-Chan, E. & Jiang, B. (2010). Bioactive proteins and peptides as functional foods and nutraceuticals. (pp. 1-40). USA: John Wiley & Sons Publication, Inc. and IFT Press.
Mirzapour, M., Rezaei, K., Sentandreu, M.A. & Moosavi‐Movahedi, A.A. (2016). In vitro antioxidant activities of hydrolysates obtained from Iranian wild almond (A mygdalus scoparia) protein by several enzymes. International Journal of Food Science & Technology, 51(3), 609-616. [In Persian]
Nimalaratne, C., Bandara, N. & Wu, J. (2015). Purification and characterization of antioxidant peptides from enzymatically hydrolyzed chicken egg white. Food Chemistry, 188, 467-472.
Nourmohammadi, E., Sadeghi Mahoonak, A., Ghorbani, M., Alami, M. & Sadeghi, M. (2017). The optimization of the production of anti-oxidative peptides from enzymatic hydrolysis of Pumpkin seed protein. Iranian Food Science and Technology Research Journal, 13(1), 14-26 [In Persian].
Oboh, G. & Shodehinde, S. A. (2009). Distribution of nutrients, polyphenols and antioxidant activities in the pilei and stipes of some commonly consumed edible mushrooms in Nigeria. Bulletin of the Chemical Society of Ethiopia, 23(3).
Paisansak, S., Sangtanoo, P., Srimongkol, P., Saisavoey, T., Reamtong, O., Choowongkomon, K., & Karnchanata, A. (2020). Angiotensin-I converting enzyme inhibitory peptide derived from the shiitake mushroom (Lentinula edodes). Journal Food Science and Technology, 58(1), 85–97.
Pan, A.D., Zeng, H.Y., Alain, G.B.F.C. & Feng, B. (2016). Heat-pretreatment and enzymolysis behavior of the lotus seed protein. Food Chemistry, 201, 230-236.
Parker, T.D., Adams, D.A., Zhou, K., Harris, M. & Yu, L. (2003). Fatty acid composition and oxidative stability of cold‐pressed edible seed oils. Journal of Food Science, 68(4), 1240-1243.
Peñta‐Ramos, E.A. & Xiong, Y.L., (2002). Antioxidant activity of soy protein hydrolysates in a liposomal system. Journal of Food Science, 67(8), 2952-2956.
Qu, W., Ma, H., Liu, B., He, R., Pan, Z. & Abano, E.E. (2013). Enzymolysis reaction kinetics and thermodynamics of defatted wheat germ protein with ultrasonic pretreatment. Ultrasonics Sonochemistry, 20(6), 1408-1413.
Rajapakse, N., Mendis, E., Byun, H.G. & Kim, S.K. (2005). Purification and in vitro antioxidative effects of giant squid muscle peptides on free radical-mediated oxidative systems. The Journal of Nutritional Biochemistry, 16(9), 562-569.
Saha, M., Eskicioglu, C. & Marin, J. (2011). Microwave, ultrasonic and chemo-mechanical pretreatments for enhancing methane potential of pulp mill wastewater treatment sludge. Bioresource Technology, 102(17), 7815-7826.
Shahi, Z., Sayyed-Alangi, S.Z. & Najafian, L. (2020). Effects of enzyme type and process time on hydrolysis degree, electrophoresis bands and antioxidant properties of hydrolyzed proteins derived from defatted Bunium persicum Bioss. press cake. Heliyon, 6(2), p.e03365.
Shazly, A.B., Mu, H., Liu, Z., Abd El-Aziz, M., Zeng, M., Qin, F., Zhang, S., He, Z. & Chen, J. (2019). Release of antioxidant peptides from buffalo and bovine caseins: Influence of proteases on antioxidant capacities. Food Chemistry, 274, 261-267.
Sun, Q., Shen, H. & Leu, Y. (2011). Antioxidant activity of hydrolysates and peptide fractions derived from porcine hemoglobin. Journal Food Science and Technology, 21, 6646-6652.
Téllez-Morales, J. A., Hernández-Santo, B. & Rodríguez-Miranda, J. (2020). Effect of ultrasound on the techno-functional properties of food components/ingredients: A review. Ultrasonics Sonochemistry, 61, 104787.
Urbizo-Reyes, U., San Martin-González, M.F., Garcia-Bravo, J., Vigil, A.L.M. & Liceaga, A.M. (2019). Physicochemical characteristics of chia seed (Salvia hispanica) protein hydrolysates produced using ultrasonication followed by microwave-assisted hydrolysis. Food Hydrocolloids, 97, p.105187.
van Wageningen-Kessels, F., Van Lint, H., Vuik, K. & Hoogendoorn, S. (2015). Genealogy of traffic flow models. EURO Journal on Transportation and Logistics, 4(4), 445-473.
Wali, A., Ma, H., Shahnawaz, M., Hayat, K., Xiaong, J. & Jing, L. (2017). Impact of power ultrasound on antihypertensive activity, functional properties, and thermal stability of rapeseed protein hydrolysates. Journal of Chemistry, Article ID 4373859.
Walters, M.E. (2019). Effects of Ultrasonication on the Antioxidant and Anti-diabetic Properties of Hydrolyzed Oat Proteins (Doctoral dissertation, Carleton University).
Wang, B., Atungulu, G.G., Khir, R., Geng, J., Ma, H., Li, Y. & Wu, B. (2015). Ultrasonic treatment effect on enzymolysis kinetics and activities of ACE-inhibitory peptides from oat-isolated protein. Food Biophysics, 10(3), 244-252.
Wen, C., Zhang, J., Zhang, H., Dzah, C.S., Zandile, M., Duan, Y., Ma, H. & Luo, X. (2018). Advances in ultrasound assisted extraction of bioactive compounds from cash crops–A review. Ultrasonics Sonochemistry, 48, 538-549.
Yamauchi, R., Tatsumi, Y., Asano, M., Kato, K. & Ueno, Y. (1988). Effect of metal salts and fructose on the autoxidation of methyl linoleate in emulsions. Agricultural and Biological Chemistry, 52(3), 849-850.
Yu, L., Sun, J., Liu, S., Bi, J., Zhang, C. & Yang, Q. (2012). Ultrasonic-assisted enzymolysis to improve the antioxidant activities of peanut (Arachin conarachin L.) antioxidant hydrolysate. International Journal of Molecular Sciences, 13(7), 9051-9068.
Zhang, Q.X., Wu, H., Ling, Y.F. & Lu, R.R. (2013). Isolation and identification of antioxidant peptides derived from whey protein enzymatic hydrolysate by consecutive chromatography and Q-TOF MS. Journal of Dairy Research, 80(3), 367-373.
Zhang, Y., Ma, L., Cai, L., Liu, Y. & Li, J. (2017). Effect of combined ultrasonic and alkali pretreatment on enzymatic preparation of angiotensin converting enzyme (ACE) inhibitory peptides from native collagenous materials. Ultrasonics Sonochemistry, 36, 88-94.
Zhou, C., Hu, J., Yu, X., Yagoub, A.E.A., Zhang, Y., Ma, H., Gao, X. & Otu, P.N.Y. (2017). Heat and/or ultrasound pretreatments motivated enzymolysis of corn gluten meal: Hydrolysis kinetics and protein structure. LWT-Food Science and Technology, 77, 488-496.
Zhu, K.X., Su, C.Y., Guo, X.N., Peng, W. & Zhou, H.M. (2011). Influence of ultrasound during wheat gluten hydrolysis on the antioxidant activities of the resulting hydrolysate. International Journal of Food Science & Technology, 46(5), 1053-1059.
Zou, Y., Yang, H., Li, P.P., Zhang, M.H., Zhang, X.X., Xu, W.M. & Wang, D.Y. (2019). Effect of different time of ultrasound treatment on physicochemical, thermal, and antioxidant properties of chicken plasma protein. Poultry Science, 98(4), 1925-1933.