بررسی تاثیر دوره نوردهی بر خصوصیات سینتیک رشد اسپیرولینا پلاتنسیس و تولید رنگدانه‌های طبیعی در فتوبیوراکتور همزن دار

نوع مقاله : مقاله علمی - پژوهشی

نویسندگان

1 گروه علوم و صنایع غذایی، دانشکده کشاورزی و منابع طبیعی ، واحد اصفهان (خوراسگان)، دانشگاه آزاد اسلامی، اصفهان، ایران

2 گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه آزاد اسلامی واحد اصفهان (خوراسگان)

3 گروه علوم و صنایع غذایی، دانشکده کشاورزی و منابع طبیعی، واحد اصفهان (خوراسگان)، دانشگاه آزاد اسلامی، اصفهان، ایران

10.30495/jftn.2022.66259.11195

چکیده

مقدمه: امروزه، اسپیرولینا پلاتنسیس یکی از محبوب‌ترین ریزجلبک‌هاست که حاوی مقادیر قابل‌توجهی از مولکول‌های فعال‌زیستی و منبع غنی از رنگدانه‌هایی مانند فیکوسیانین است.
مواد و روش‌ها: در این پژوهش تاثیر دوره نوردهی بر کشت جلبک اسپیرولینا پلاتنسیس و تولید رنگدانه‌های (کلروفیل، فیکوسیانین، آلوفیکوسیانین و کاروتنوئید) در شرایط دمای 28 درجه سلسیوس، شدت نور 150 (µmol/m-2/s-1)، در محیط کشت زاروک،pH برابر 9، در کشت غوطه وری در فرمانتور همزن دار مورد مطالعه قرار گرفت.
یافته‌ها: نشان داد افزایش زمان نوردهی به‌عنوان یک محرک رشد در اسپیرولینا می‌باشد و با افزایش زمان نوردهی غلظت زیست-توده، کلروفیل، فیکوسیانین، آلوفیکوسیانین و کاروتنوئید به صورت معنا‌داری افزایش می‌یابد (05/0p≤). در روزهای پایانی افزایش تراکم سلولی اثر سایه‌زنی سطح بر عمق را افزایش داد و نفوذ نور به عمق کشت کاهش‌ یافت و بر میزان کلروفیل تاثیر منفی گذاشت. دوره نوردهی 24 ساعته بیشترین غلظت زیست‌توده، فیکوسیانین، آلوفیکوسیانین به ترتیب 46/1 گرم در لیتر، 145 و 57/39 میلی گرم در لیتر را نشان داد این درحالی بود که دوره نوردهی 16 ساعته بیشترین غلظت کلروفیل و کارتنوئید به ترتیب 62/8 و 05/3 میلی گرم در لیتر بود.
نتیجه‌گیری: به طور کلی استفاده از دوره نوردهی 24 ساعته، تولید رنگدانه‌ها و زیست‌توده را افزایش می‌دهد اما تولید رنگدانه‌های کلروفیل و کاروتنوئید در اواخر دوره کشت به دلیل افزایش غلظت زیست‌توده و کاهش نفوذ نور در تیمار ۲۴ ساعت روشنایی کاهش یافت.

کلیدواژه‌ها


عنوان مقاله [English]

Investigating the Effect of Light Exposure on Growth Kinetic and Natural Pigments Production by Spirulina platensis Using Stirred Photobioreactor

نویسندگان [English]

  • Sajjad Torabi 1
  • Mahshid Jahadi 2
  • Nafiseh Ghasemisepro 3
  • Maryam Araj-Shirvani 1
1 Department of Food Science and Technology Faculty of Agriculture and Natural Resources, Isfahan Branch (Khorasgan), Islamic Azad University, Isfahan, Iran
2 Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, Isfahan Branch (Khorasgan), Islamic Azad University, Isfahan, Iran
3 Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, Isfahan Branch (Khorasgan), Islamic Azad University, Isfahan, Iran
چکیده [English]

Introduction: Nowadays, Spirulina platensis is one of the most popular microalgae, containing significant amounts of active molecules and a rich source of pigments such as phycocyanin. Materials and Methods: In this study, the effect of exposure period of light emission on culture of Spirulina platensis and production of pigments (chlorophyll, phycocyanin, allophycocyanin and carotenoids) at 28 ° C, pH of 9, in submerged culture in a stirred tank photobioreactor was studied. Results: The results showed that increasing the exposure time is a growth stimulant in spirulina and by increasing the exposure time, the concentrations of biomass, chlorophyll, phycocyanin, allofycocyanin and carotenoids are increased significantly (p < 0.05). In the end days of cultivation, cell density increased the effect of surface shading on depth and the penetration of light into the depth of cultivation was reduced that affected the chlorophyll content. The 24-hour exposure period showed the highest concentrations of biomass, phycocyanin, allofycocyanin at 1.46 g/l, 145 and 39.57 mg/l, respectively, while the 16-hour exposure period had the highest concentrations of chlorophyll and carotenoids at 8.62 and 3.55 mg/l, respectively. Conclusion: Generally, using of a 24-hour exposure period increases the production of pigments and biomass. However, the production of chlorophyll and carotenoid pigments decreased at the end of the cultivation period due to the increase in biomass concentration and the reduction of light penetration in the 24-hour light treatment.

کلیدواژه‌ها [English]

  • Light exposure
  • Photobioreactor
  • Phycocyanin
  • Spirulina platensis
Ajayan, K. V., Selvaraju, M. & Thirugnanamoorthy, K., (2012). Enrichment of chlorophyll and phycobiliproteins in Spirulina platensis by the use of reflector light and nitrogen sources: An in-vitro study. Biomass and Bioenergy, 47, 436-441.
Banayan, S., Jahadi, M. & Fazel, M. (2020). Investigation of factors affecting the production of chlorophyll and carotenoid pigments from Spirulina platensis using Berman platelet design. Journal of Food Microbiology, 7(2), 70-81. [In Persian].
Chen, C.Y., Kao, P.C., Tsai, C.J., Lee, D.J. & Chang, J.S. (2013). Engineering strategies for simultaneous enhancement of C-phycocyanin production and CO2 fixation with Spirulina platensis. Bioresource Technology, 145, 307-312.
Chen, H.B., Wu, J.Y., Wang, C.F., Fu, C.C., Shieh, C.J., Chen, C.I., Wang, C.Y. & Liu, Y.C. (2010). Modeling on chlorophyll and phycocyanin production by Spirulina platensis under various light-emitting diodes. Biochemical Engineering Journal, 53(1), 52-56.
Colla, L.M., Reinehr, C.O., Reichert, C. & Costa, J.A.V. (2007). Production of biomass and nutraceutical compounds by Spirulina platensis under different temperature and nitrogen regimes. Bioresource Technology, 98(7), 1489-1493.
Doke, J.M. (2005). An improved and efficient method for the extraction of phycocyanin from Spirulina sp. International Journal of Food Engineering, 1(5).
Ferreira, L.S., Rodrigues, M.S., Converti, A., Sato, S. & Carvalho, J.C. (2012). Kinetic and growth parameters of Arthrospira (Spirulina) platensis cultivated in tubular photobioreactor under different cell circulation systems. Biotechnology and Bioengineering, 109(2), 444-450.
Ho, S. H., Liao, J. F., Chen, C. Y. & Chang, J. S. (2018). Combining light strategies with recycled medium to enhance the economic feasibility of phycocyanin production with Spirulina platensis. Bioresource Technology, 247,669-675.
Lee, S. H., Lee, J. E., Kim, Y. & Lee, S. Y. (2016). The production of high purity phycocyanin by Spirulina platensis using light-emitting diodes based two-stage cultivation. Applied Biochemistry and Biotechnology, 178(2), 382-395.
Lima, G. M., Teixeira, P. C., Teixeira, C. M., Filócomo, D. & Lage, C. L. (2018). Influence of spectral light quality on the pigment concentrations and biomass productivity of Arthrospira platensis. Algal Research, 31, 157-166.
Ma, R., Lu, F., Bi, Y. & Hu, Z. (2015). Effects of light intensity and quality on phycobiliprotein accumulation in the cyanobacterium Nostoc sphaeroides Kützing. Biotechnology Letters, 37(8), 1663-1669.
Markou, G., Chatzipavlidis, I. & Georgakakis, D. (2012). Effects of phosphorus concentration and light intensity on the biomass composition of Arthrospira (Spirulina) platensis. World Journal of Microbiology and Biotechnology, 28(8), 2661-2670.
Mirón, A.S., Garcıa, M.C.C., Gómez, A.C., Camacho, F.G., Grima, E.M. & Chisti, Y. (2003). Shear stress tolerance and biochemical characterization of Phaeodactylum tricornutum in quasi steady-state continuous culture in outdoor photobioreactors. Biochemical Engineering Journal, 16(3), 287-297.
Ogbonda, K.H., Aminigo, R.E. & Abu, G.O. (2007). Influence of aeration and lighting on biomass production and protein biosynthesis in a Spirulina sp. isolated from an oil-polluted brackish water marsh in the Niger Delta, Nigeria. African Journal of Biotechnology, 6(22).
Pegallapati, A.K. & Nirmalakhandan, N. (2011). Energetic evaluation of an internally illuminated photobioreactor for algal cultivation. Biotechnology letters, 33(11), 2161.
Ravelonandro, P.H., Ratianarivo, D.H., Joannis-Cassan, C., Isambert, A. & Raherimandimby, M. (2011). Improvement of the growth of Arthrospira (Spirulina) platensis from Toliara (Madagascar): Effect of agitation, salinity and CO2 addition. Food and Bioproducts Processing, 89(3), 209-216.
Rodrigues, R. D. P., de Lima, P. F., de Santiago-Aguiar, R. S. & Rocha, M. V. P. (2019). Evaluation of protic ionic liquids as potential solvents for the heating extraction of phycobiliproteins from Spirulina (Arthrospira) platensis. Algal Research, 38, 101391.
Sánchez, M., Bernal-Castillo, J., Rozo, C. & Rodríguez, I. (2003). Spirulina (Arthrospira): an edible microorganism: a review. Universitas Scientiarum, 8(1), 7-24.
 
Shi, W.Q., Li, S.D., Li, G.R., Wang, W.H., Chen, Q.X., Li, Y.Q. & Ling, X.W. (2016). Investigation of main factors affecting the growth rate of Spirulina. Optik, 127(16), 6688-6694.
Soni, R.A., Sudhakar, K. & Rana, R.S. (2019). Comparative study on the growth performance of Spirulina platensis on modifying culture media. Energy Reports, 5, 327-336.
Torabi, S., Jahadi, M. & Ghasemisepro, N. (2021). Effects of Agitation and Aeration on Growth Kinetics of Spirulina platensis and Production of Natural Pigments in Stirred Photobioreactor. Research and Innovation in Food Science and Technology, 10(3), 261-272. [In Persian].
Wang, C.Y., Fu, C.C. & Liu, Y.C. (2007). Effects of using light-emitting diodes on the cultivation of Spirulina platensis. Biochemical Engineering Journal, 37(1), 21-25.
Zeng, X., Danquah, M.K., Zhang, S., Zhang, X., Wu, M., Chen, X.D., Ng, I.S., Jing, K. & Lu, Y. (2012). Autotrophic cultivation of Spirulina platensis for CO2 fixation and phycocyanin production. Chemical Engineering Journal, 183, 192-197.
Zhang, L., Chen, L., Wang, J., Chen, Y., Gao, X., Zhang, Z. & Liu, T. (2015). Attached cultivation for improving the biomass productivity of Spirulina platensis. Bioresource Technology, 181, 136-142.