ارزیابی برخی از ویژگی‌های عملکردی پکتین استخراجی از پوست انار به روش مایکروویو

نوع مقاله : مقاله علمی - پژوهشی

نویسندگان

1 استاد مرکز تحقیقات آزمایشگاهی غذا و دارو، آزمایشگاه‌های مرجع کنترل غذا و دارو، سازمان غذا و دارو، وزارت بهداشت، درمان و آموزش پزشکی، تهران، ایران

2 کارشناسی ارشد گروه علوم و مهندسی صنایع غذایی، دانشگاه علوم پزشکی، واحد علوم دارویی، دانشگاه آزاد اسلامی، تهران، ایران

3 دانشیار گروه علوم و صنایع غذایی، دانشکده کشاورزی، واحد ورامین- پیشوا، دانشگاه آزاد اسلامی، ورامین، ایران

چکیده

مقدمه: پکتین مخلوط پیچیده ای از پلی ساکاریدهای موجود در دیواره سلولی گیاهان است. هدف از این تحقیق ارزیابی راندمان استخراج پکتین از پوست انار با استفاده از امواج مایکروویو و بررسی برخی از ویژگی­های عملکردی آن می­باشد.
مواد و روش­ها: پس از بهینه­سازی استخراج، برخی از ویژگی­های عملکردی پکتین استخراج شده از پوست انار شامل درجه استریفیکاسیون، محتوای گالاکتورونیک اسید، خواص امولسیفایری، پایداری امولسیون، ظرفیت نگهداری آب و روغن، ظرفیت آنتی اکسیدانی و رفتار طیف مادون قرمز مورد بررسی قرار گرفت. استخراج پکتین از پوست انار به عنوان یک منبع فراوان و در دسترس برای اولین بار به روش مایکروویو در دمای  °C120 در نسبت معین جامد به مایع تحت شرایط مختلف pH (5/1، 25/2 و 0/3)، در زمان­های مختلف (60، 120 و 180 ثانیه) و در سه سطح انرژی (300، 500 و 700 وات) انجام شد.
یافته­ها: بازده استخراج پکتین در شرایط بهینه (توان 700 وات، زمان 120 ثانیه و pH برابر با 5/1) 42/20 درصد بدست آمد. درجه استری­شدن پکتین برابر با 24/33 درصد، محتوای گالاکتورونیک اسید 35/75 درصد و فعالیت امولسیفایری آن برابر با 4/56 درصد بود و امولسیون به دست آمده در دمای  °C4 نسبت به امولسیون حاصل در دمای   °C24 پایدارتر بود. ظرفیت نگهداری آب و روغن به ازای هر گرم از پکتین استخراج شده به ترتیب برابر با 86/3 و 13/2 گرم بدست آمد.
نتیجه­گیری: استفاده از پکتین استخراج شده از پوست انار به روش مایکروویو راندمان مناسبی دارد و ویژگی­های عملکردی بسیار خوب آن می­تواند زمینه را برای بکارگیری آن در برخی از فرمولاسیون­های غذایی به همراه داشته باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of Some Functional Properties of Extracted Pectin from Pomegranate Peel by Microwave Method

نویسندگان [English]

  • B. Akbari-Adergani 1
  • P. Zivari Shayesteh 2
  • R. Pourahmad 3
1 Professor, Food and Drug Laboratory Research Center, Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
2 M.Sc. Student of the Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
3 Associate Professor of the Department of Food Science and Technology, College of Agriculture, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran.
چکیده [English]

Introduction: Pectin is a complex mixture of polysaccharides in the cell wall of plants. The aim of this study was to evaluate the efficiency of pectin extraction from pomegranate peel using microwaves and to investigate some of its functional properties.
Materials and Methods: Some functional properties of pectin extracted from pomegranate peel including degree of esterification, galacturonic acid content, emulsifying properties, emulsion stability, water and oil storage capacity, antioxidant capacity and infrared spectrum behavior were investigated after optimization of extraction procedure. Extraction of pectin from pomegranate peel as an abundant and available source were performed for the first time by microwave at 120 °C in a certain ratio of solid to liquid under different pH conditions (1.5, 2.25 and 0.3), irradiating times (60, 120 and 180 seconds) and at three energy levels (300, 500 and 700 watts).
Results: Pectin extraction efficiency under optimal conditions (power 700 watts, time 120 seconds and pH of 1.5) was 20.42%. The degree of esterification of pectin was 33.24%, galacturonic acid content was 75.35% and its emulsifying activity was 56.4% and the emulsion obtained at 4 °C was more stable than the resulting emulsion at 24 °C. The storage capacity of water and oil per gram of extracted pectin was 3.86 and 2.13 gr, respectively.
Conclusion: The application of pectin extracted from pomegranate peel by microwave method has a good efficiency and due to its good functional properties can pave the way for its use in some food formulations.

کلیدواژه‌ها [English]

  • Degree of Esterification
  • Functional Properties
  • Microwave Extraction
  • Pectin
  • Pomegranate Peel
Al-Rawahi, A. S., Rahman, M. S., Guizani, N. & Essa, M. M. (2013). Chemical Composition, Water Sorption Isotherm, and Phenolic Contents in Fresh and Dried Pomegranate Peels. Drying Technology. An International Journal, 31, 257-263.
Akbarpour, V., Hemmati, K. & Sharifani, M. (2009). Physical and chemical properties of pomegranate (Punica granatum L.) fruit in maturation stage. American-Eurasian Journal of Agriculture and Environmental Sciences, 6(4), 411-416.
Amirasgari, N. & Mirsaeedghazi, H. (2014). Microfiltration of red beet juice using mixed cellulose ester membrane. Journal of Food Processing and Preservation, 1745-4549.
Basanta, M. F., Ponce, N. M. A., Rojas, A. M. & Stortz, C. A. (2012). Effect of extraction time and temperature on the characteristics of loosely bound pectins from Japanese plum. Carbohydrate Polymers, 89(1), 230-235.
Bagherian, H., Ashtiani, F. Z., Fouladitajar, A. & Mohtashamy, M. (2011). Comparisons between conventional, microwave-and ultrasound-assisted methods for extraction of pectin from grapefruit. Chemical Engineering and Processing. Process Intensification, 50(11-12), 1237-1243.
Bahramipour, M. & Akbari-adergani, B. (2018). Optimization of microwave-assisted extraction of pectin from peaspod by response surface method. Journal of Food Science and Technology, 80(15), 349-360 [In Persian].
Bayar, N., Bouallegue, T., Achour, M., Kriaa, M., Bougatef, A. & Kammoun, R. (2017).
Ultrasonic extraction of pectinfrom Opuntia ficus indica cladodes after mucilage removal: Optimization of experimental conditions and evaluation of chemical and functional properties. Food Chemistry, 235, 275-282.
Bayar, N., Friji, M. & Kammoun, R. (2018). Optimization of enzymatic extraction of pectin from Opuntia ficus indica cladodes after mucilage removal. Food Chemistry, 241, 127-134.
Betancur-Ancona, D., Peraza-Mercado, G., Moguel-Ordonez, Y. & Fuertes-Blanco, S. (2004). Physicochemical characterization of lima bean (Phaseolus lunatus) and Jack bean (Canavalia ensiformis) fibrous residues. Food Chemistry, 84(2), 287-295.
Chan, S. & Choo, W. (2013). Effect of extraction conditions on the yield and chemical properties of pectin from cocoa husks. Food Chemistry, 141(4), 3752–3758.
Chaouch, M. A., Hafsa, J., Rihouey, C., Le Cerf, D. & Majdoub, H. (2015). Depolymerization of polysaccharides from Opuntia ficus indica: Antioxidant and antiglycated activities. International Journal of Biological Macromolecules, 79, 779-786.
Dalev, P. G. & Simeonova, L. S. (1995). Emulsifying properties of protein–pectin complexes and their use in oil‐containing foodstuffs. Journal of the Science of Food and Agriculture, 68(2), 203–206.
Fishman, M. L., Chau, H. K., Hoagland, P. & Ayyad, K. (2000). Characterization of pectin, flash-extracted from orange albedo by microwave heating, under pressure. Carbohydrate Research, 323(1-4), 126-138.
Fraeye, I., Duvetter, T., Doungla, E., Loey, A. V. & Hendrickx, M. (2010). Fine-tuning the properties of pectin–calcium gels by control of pectin fine structure, gel composition and environmental conditions. Trends in Food Science & Technology, 21(5), 219-228.
Garna, H., Mabon, N., Robert, C., Cornet, C., Nott, K., Legeros, H., Wathelet, B. & Paquot, M. (2007). Effect of extraction conditions on the yield and purity of apple pomace pectin precipitated but not washed by alcohol. Journal of Food Science, 72, C1-C9.
Grassino, A. N., Halambek, J., Djaković, S., Brnčić, S. R., Dent, M. & Grabarić, Z. (2016).
Utilization of tomato peel waste from canning factory as a potential source for pectin production and application as tin corrosion inhibitor. Food Hydrocolloids, 52, 265-274.
Hamedi, F., Mohebbi, M., Shahidi, F. & Azarpazhooh, E. (2018). Ultrasound-assisted osmotic treatment of model food impregnated with pomegranate peel phenolic compounds: Mass transfer, texture, and phenolic evaluations. Food and Bioprocess Technology, 11(5), 1061-1074.
Hoa, H. D., Nguyen Ha, V. H., Nguyen Geoffrey, P. S. (2019). Properties of Pectin Extracted from Vietnamese Mango Peels. Foods, 8, 629; doi:10.3390/foods8120629.
 
Hosseini, S. S., Khodaiyan, F. & Yarmand, M. S. (2016). Optimization of microwave assisted extraction of pectin from sour orange peel and its physicochemical properties. Carbohydrate Polymers, 140, 59-65.
Jafari, F., Khodaiyan, F., Kiani, H. & Hosseini, S. S. (2017). Pectin from carrot pomace: Optimization of extraction and physicochemical properties. Carbohydrate Polymers, 157, 1315-1322.
Joye, D. D. & Luzio, G. A. (2000). Process for selective extraction of pectin’s from plant material by differential pH. Carbohydrate Polymer, 43(4), 337-342.
Kalapathy, U. & Proctor, A. (2001). Effect of acid extraction and alcohol precipitation conditions on the yield and purity of soy hull pectin. Food Chemistry, 73(4), 393-396.
Kazemi, M., Khodaiyan, F., Labbafi, M., Hosseini, S. S. & Hojjati, M. (2019). Pistachio green hull pectin: Optimization of microwave-assisted extraction and evaluation of its physicochemical, structural and functional properties. Food Chemistry, 271, 663-672.
Lanrewaju, R. A., Ademola, A., Valérie, O. & Vijaya, R. (2017). Advances in the pectin production process using novel extraction techniques: A review. Food Hydrocolloids, 62, 239-250.
Minkov, S., Minchev, A. & Paev, K. (1996). Modeling of the hydrolysis and extraction of apple pectin. Journal of Food Engineering, 29(1), 107-113.
Li, D., Jia, X., Wei, Z. & Liu, Z. (2012). Box–Behnken experimental design for investigation of microwave-assisted extracted sugar beet pulp pectin. Carbohydrate Polymers, 88(1), 342-346.
Liu, W., Cui, S. W. & Kakuda, Y. (2006). Extraction, fractionation, structural and physical characterization of wheat β-D-glucans. Carbohydrate Polymers, 63(3), 408-416.
Liu, L., Fishman, M. L. & Hicks, K. B. (2007). Pectin in controlled drug delivery-a review. Cellulose, 14(1), 15-24.
Liu, L., Cao, J., Huang, J., Cai, Y. & Yao, J. (2010). Extraction of pectins with different degrees of esterification from mulberry branch bark. Bioresource Technology, 101(9), 3268-3273.
Maran, J. P., Sivakumar, V., Thirugnanasambandham, K. & Sridhar, R. (2013). Optimization of microwave assisted extraction of pectin from orange peel. Carbohydrate Polymers, 97(2), 703-709.
Maran, J. P., Sivakumar, V., Thirugnanasambandham, K. & Sridhar, R. (2014). Microwave assisted extraction of pectin from waste Citrullus lanatus fruit rinds. Carbohydrate Polymers, 101, 786-791.
Maran, J. P., Swathi, K., Jeevitha, P., Jayalakshmi, J. & Ashvini, G. (2015). Microwave assisted extraction of pectic polysaccharide from waste mango peel. Carbohydrate Polymers, 123, 67-71.
Oliveira, T.S., Rosa, M.F., Cavalcante, F.L., Pereira, P.H.F., Moates, G.K., Wellner, N., Mazzetto, S.E., Waldron, K.W. Henriette M. C. Azeredo (2015). Optimization of pectin extraction from banana peels with citric acid by using response surface methodology. Food Chemistry, doi: http://dx.doi.org/10.1016/ j.foodchem.2015.08.080
Pagan, J., Ibarz, A., Llorca, M., Pagan, A. & Barbosa-Canovas, G. V. (2001). Extraction and characterization of pectin from stored peach pomace. Food Research International, 34, 605-612.
Pasandide, B., Khodaiyan, F., Mousavi, Z. E. & Hosseini, S. S. (2017). Optimization of aqueous pectin extraction from Citrus medica peel. Carbohydrate Polymers, 178, 27-33.
Ptichkina, N. M., Markina, O. A. & Rumyantseva, G. N. (2008). Pectin extraction from pumpkin with the aid of microbial enzymes. Food Hydrocolloids, 22(1), 192-195.
Qiu, L., Zhao, G., Wu, H., Jiang, L., Li, X. & Liu, J. (2010). Investigation of combined effects of independent variables on extraction of pectin from banana peel using response surface methodology. Carbohydrate Polymers, 80(2), 326-331.
Santos, J. D. G., Espeleta, A. F., Branco, A. & de Assis, S. A. (2013). Aqueous extraction of pectin from sisal waste. Carbohydrate Polymers, 92(2), 1997-2001.
Seixas, F. L., Fukuda, D. L., Turbiani, F. R., Garcia, P. S., Carmen, L. d. O., Jagadevan, S. & Gimenes, M. L. (2014). Extraction of pectin from passion fruit peel (Passiflora edulis f. flavicarpa) by microwave-induced heating. Food Hydrocolloids, 38, 186-192.
Sila, A., Bayar, N., Ghazala, I., Bougatef, A., Ellouz-Ghorbel, R. & Ellouz-Chaabouni, S. (2014). Water-soluble polysaccharides from agro-industrial by-products: Functional and biological properties. International Journal of Biological Macromolecules, 69, 236-243.
Singh, B., Pal Singh, J., Paur, A., Kaur A. & Singh, N. (2019). Antimicrobial potential of pomegranate peel: a review. International Journal of Food Science and Technology, 54(4) 959-965.
Swamy, G. J. & Muthukumarappan, K. (2017). Optimization of continuous and intermittent microwave extraction of pectin from banana peels. Food Chemistry, 220, 108-114.
USP NF 21. (2003). The United States pharmacopeia - The national formulary. Rockville, MD: United States Pharmacopeia Convention, pp. 1401-1402.