مطالعه فعالیت مهارکنندگی آنتی‌اکسیدان ریبوفلاوین در حضور نور خورشید

نوع مقاله : مقاله علمی - پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد گروه شیمی، دانشکده علوم، واحد مشهد، دانشگاه آزاد اسلامی، مشهد، ایران

2 دانشیار گروه شیمی، دانشکده علوم، واحد مشهد، دانشگاه آزاد اسلامی، مشهد، ایران

چکیده

مقدمه: رادیکال­های آزاد، محصولات جانبی طبیعی سوخت و ساز بدن به شمار می­روند که در حضور آنتی­اکسیدان­ها اثر این رادیکال­های آزاد خنثی شده و آسیب­های ناشی از آنها کمتر می­شود. یکی از آنتی­اکسیدان­های طبیعی ریبوفلاوین می­باشد که در بیشتر مواد گیاهی و حیوانی وجود دارد. مولکول ریبوفلاوین یک ماده حساس به نور نیز هست که از طریق واکنش فوتوشیمیایی باعث ایجاد تغییر شیمیایی در مولکول­های مجاور می­شود. خاصیت آنتی­اکسیدانی ریبوفلاوین متاثر از تابش نور بوده و حساسیت آن به نور باعث بازده بیشتر خاصیت آنتی­اکسیدانی آن می­شود.
مواد و روش­ها: در این پژوهش چهار پارامتر مهم شامل دما، غلظت ریبوفلاوین، زمان و تابش­دهی نور بر خاصیت آنتی­اکسیدانی ریبوفلاوین مورد بررسی قرار گرفت. برای این منظور، فعالیت آنتی­اکسیدانی ریبوفلاوین بر اساس فعالیت مهار رادیکال آزاد پایدار دی فنیل پیکریل هیدرازیل (DPPH) به وسیله دستگاه اسپکتروفوتومتر UV-Vis تعیین ­شد.
یافته ­ها: فعالیت آنتی­اکسیدان ریبوفلاوین با افزایش غلظت در گستره غلظتی 7/0-4/0 میلی­مولار بیشتر شد. در حضور نور خورشید فعالیت آنتی­اکسیدانی ریبوفلاوین به گونه­ای است که رادیکال آزاد DPPH را به طور کامل مهار می­کند. همچنین در گستره دمایی به کار رفته، با افزایش دما فعالیت آنتی­اکسیدان در مهار رادیکال آزاد شدیدتر شده است. از نظر سینتیکی، واکنش مهار رادیکال آزاد DPPH با استفاده از معادله سینتیک مرتبه یک توصیف شد.
نتیجه ­گیری: با توجه به مطالعه انجام شده ریبوفلاوین به عنوان یک ماده حساس نوری دارای خاصیت آنتی­اکسیدانی قابل ملاحظه­ای در مهار رادیکال آزاد DPPH در حضور نور خورشید می­باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Riboflavin Antioxidant Scavenging Activity in the Presence of Sunlight

نویسندگان [English]

  • E. Vahhabi Nezhad 1
  • M. Momen Heravi 2
1 MSc Student of the Department of Chemistry, Faculty of Science, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
2 Associated Professor of Department of Chemistry, Faculty of Science, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
چکیده [English]

Introduction: Free radicals are natural metabolic products that can cause some serious damages to living cells like molecular oxidation and genetic mutation. Antioxidants are natural or synthetic molecules which inhibit the living cell‘s oxidation caused by free radicals. One of the natural antioxidants is riboflavin, which is available in many plants and animal materials. Riboflavin molecule is a photosensitive material which through the photochemical reaction causes chemical changes in the adjacent molecules. The effect of antioxidant and photosensitizer properties.
Materials and Methods: In this study, the effect of four important parameters including temperature, riboflavin concentration, time and light irradiation on the antioxidant properties of riboflavin were investigated. The antioxidant activity of the riboflavin was determined based on the scavenging DPPH free radical (2, 2-diphnyl-1-picrylhydrazyl) using UV-Vis spectrophotometer.
Results: The antioxidant activity of riboflavin is increased by increasing the concentration in the range of 0.4-0.7 mM. In the presence of sunlight, the free radicals of DPPH were completely scavenged by the antioxidant activity of riboflavin. In the applied temperature range, by increasing the temperature, the antioxidants activity became more intense in the free radical scavenging. Regarding kinetic, the DPPH free radical scavenging reaction was described using the first-order kinetic equation.
Conclusion: According to this study, riboflavin as a photosensitive materials has a significant antioxidant effect on free radical DPPH in the presence of sunlight.

کلیدواژه‌ها [English]

  • Antioxidant Activity
  • Kinetic study
  • Riboflavin
  • Sunlight
Alger, M. (1996). Polymer science dictionary. Springer Science & Business Media.
Ameta, R. K. & Singh, M. (2014). A thermodynamic in vitro antioxidant study of vitamins B (niacin and niacin amide) and C (ascorbic acid) with DPPH through UV spectrophotometric and physicochemical methods. Journal of Molecular Liquids, 195, 40-46.
Anbaraki, A., Khoshaman, K., Ghasemi, Y. & Yousefi, R. (2016). Preventive role of lens antioxidant defense mechanism against riboflavin-mediated sunlight damaging of lens crystallins. International journal of biological macromolecules, 91, 895-904.
Ardalan, P., Ardalan, T. & Momen Heravi, M. (2014). A DFT Study on Antioxidant Activity of Trolox and Substituted Trolox and Their Radicals. Journal of Applied Chemistry, 8(29), 45-50.
Avery, H. E. (1974). Basic reaction kinetics and mechanisms. Macmillan.
Braslavsky, S. E. (2007). Glossary of terms used in photochemistry, (IUPAC Recommendations 2006). Pure and Applied Chemistry, 79(3), 293-465.
Chaudhuri, S., Batabyal, S., Polley, N. & Pal, S. K. (2014). Vitamin B2 in nanoscopic environments under visible light: photosensitized antioxidant or phototoxic drug?. The Journal of Physical Chemistry A, 118(22), 3934-3943.
Chaudhuri, S., Sardar, S., Bagchi, D., Singha, S. S., Lemmens, P. & Pal, S. K. (2015). Sensitization of an endogenous photosensitizer: electronic spectroscopy of riboflavin in the proximity of semiconductor, insulator, and metal nanoparticles. The Journal of Physical Chemistry A, 119(18), 4162-4169.
Ciliberto, H., Ciliberto, M., Briend, A., Ashorn, P., Bier, D. & Manary, M. (2005). Antioxidant supplementation for the prevention of kwashiorkor in Malawian children: randomised, double blind, placebo controlled trial. Bmj, 330(7500), 1109.
Clerici, M. T. P. S. & Carvalho-Silva, L. B. (2011). Nutritional bioactive compounds and technological aspects of minor fruits grown in Brazil. Food Research International, 44(7), 1658-1670.
Dizdaroglu, M. & Jaruga, P. (2012). Mechanisms of free radical-induced damage to DNA. Free radical research, 46(4), 382-419.
Galston, A. W. & Baker, R. S. (1949). Inactivation of enzymes by visible light in the presence of riboflavin. Science (Washington), 109, 485-486.
Gutteridge, J. & Halliwell, B. (1994). Antioxidants in nutrition, health, and disease. Oxford University Press.
Haggi, E., Blasich, N., Gutiérrez, L., Vázquez, G., Criado, S., Miskoski, S., Ferrari. G., Paulina Montana, M. & García, N. A. (2012). On the generation and quenching of reactive-oxygen-species by aqueous vitamin B2 and serotonin under visible-light irradiation. Journal of Photochemistry and Photobiology B: Biology, 113, 22-28.
Heravi, M. M., Haghi, B., Morsali, A., Ardalan, P. & Ardalan, T. (2012). Kinetic
 
study of DPPH scavenging in the presence of mixture of Zinc and Vitamin C as an antioxidant. Journal of Chemical Health Risks, 2(2).
Knak, A., Regensburger, J., Maisch, T. & Bäumler, W. (2014). Exposure of vitamins to UVB and UVA radiation generates singlet oxygen. Photochemical & Photobiological Sciences, 13(5), 820-829.
Kumar, S., Lemos, M., Sharma, M. & Shriram, V. (2011). Free radicals and antioxidants. Advances in Applied Science Research, 2, 129-135.
Li, J., Yuan, H. & Zhu, Z. (2016). Improved photoelectrochemical performance of Z-scheme gC3N4/Bi2O3/BiPO4 heterostructure and degradation property. Applied Surface Science, 385, 34-41
Marković, Z., Milenković, D., Đorović, J., Marković, J. M. D., Stepanić, V., Lučić, B. & Amić, D. (2012). PM6 and DFT study of free radical scavenging activity of morin. Food Chemistry, 134(4), 1754-1760.
McNeill, G., Jia, X., Whalley, L. J., Fox, H. C., Corley, J., Gow, A. J. & Deary, I. J. (2011). Antioxidant and B vitamin intake in relation to cognitive function in later life in the Lothian Birth Cohort 1936. European Journal of Clinical Nutrition, 65(5), 619-626.
Nakchat, O., Nalinratana, N., Meksuriyen, D. & Pongsamart, S. (2014). Tamarind seed coat extract restores reactive oxygen species through attenuation of glutathione level and antioxidant enzyme expression in human skin fibroblasts in response to oxidative stress. Asian Pacific Journal of Tropical Biomedicine, 4(5), 379-385.
Sen, S. & Chakraborty, R. (2011). The role of antioxidants in human health. In Oxidative stress: diagnostics, prevention, and therapy (pp. 1-37). American Chemical Society.
Sen, S., Chakraborty, R., Sridhar, C., Reddy, Y. S. R. & De, B. (2010). Free radicals, antioxidants, diseases and phytomedicines: current status and future prospect. International Journal of Pharmaceutical Sciences Review and Research, 3(1), 91-100.
Sharma Om, P., & Bhat, T. K. (2009). DPPH antioxidant assay revisited. Food Chemistry, 113.4, 1202-1205.
Toyosaki, T. (1992). Antioxidant effect of riboflavin in enzymic lipid peroxidation. Journal of Agricultural and Food Chemistry, 40(10), 1727-1730.
Toyosaki, T. & Mineshita, T. (1989). Antioxidant effect of riboflavin in aqueous solution. Journal of Agricultural and Food Chemistry, 37(2), 286-289.
Williams, R. R. & Cheldelin, V. H. (1942). Destruction of riboflavin by light. Science (Washington), 96, 22-23.
Wu, D., Wang, H., Li, C., Xia, J., Song, X. & Huang, W. (2014). Photocatalytic self-cleaning properties of cotton fabrics functionalized with p-BiOI/n-TiO2 heterojunction. Surface and Coatings Technology, 258, 672-676.
Xie, G., Zhang, K., Guo, B., Liu, Q., Fang, L. & Gong, J. R. (2013). Graphene‐Based Materials for Hydrogen Generation from Light‐Driven Water Splitting. Advanced Materials, 25(28), 3820-3839.
Yagi, T. (2012). B vitamins and folate: chemistry, analysis, function and effects (No. 4). Royal Society of Chemistry.