مدل سازی فرآیند برشته شدن اسنک سویا تحت سامانه مادون قرمز با استفاده از شبکه عصبی مصنوعی

نوع مقاله : مقاله علمی - پژوهشی

نویسندگان

1 دانش آموخته دکتری مهندسی مواد و طراحی صنایع غذایی، دانشکده صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

2 استاد گروه مهندسی مواد و طراحی صنایع غذایی، دانشکده صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

چکیده

مقدمه: دانه سویا به عنوان یک منبع غنی از ترکیبات مغذی ضروری همچون پروتئین­ها، روغن­ها و ترکیبات زیست فعال شناخته می­شود و دانه سویا این قابلیت را دارد که به عنوان یک اسنک و مغز برشته شده استفاده شود، اما وجود محدودیت­های مثل طعم سویا، بافت سخت و طعم لوبیای گس مانند منجر به کاهش مصرف این منبع غنی گشته است، بنابراین برای بهبود و افزایش مصرف دانه سویا، باید این محدودیت­ها برطرف گردد. برشته کردن می­تواند منجر به ایجاد یک طعم مطلوب بدون هیچ گونه طعم لوبیایی و تلخ شود و به طور
معنی­داری باعث افزایش طعم، رنگ و بهبود بافت دانه سویا گردد.
مواد و روش­ها: برای این مطالعه برشته کن مادون قرمز طراحی و ساخته شد و نمونه آماده شده دانه سویا (فرآوری شده) با توجه به شرایط آزمایش برشته شد. در این بررسی، مدل شبکه عصبی مصنوعی برای مدل­سازی سینتیک کاهش رطوبت در اسنک سویا در طول برشته کردن با استفاده از سامانه مادون قرمز توسعه داده شد. برای این منظور، توان لامپ مادون قرمز (250، 350 و 450 وات)، فاصله سطح لامپ از نمونه (4، 7 و 10 سانتی­متر) و زمان برشته کردن (25 دقیقه) به عنوان ورودی در نظر گرفته شد و مقدار نسبت رطوبت (MR) به عنوان خروجی تخمین زده شد. علاوه بر این سه مدل ریاضی مختلف برای برازش داده­ها مورد استفاده قرار گرفت و در نهایت داده­های برازش شده این سه مدل ریاضی با داده­های برازش شده مدل شبکه عصبی مصنوعی مورد مقایسه قرار گرفت.
یافته­ها: براساس نتایج حاصل از به کار­گیری شبکه عصبی مصنوعی، مدل شبکه عصبی مصنوعی برای داده­های نسبت رطوبت با یک لایه مخفی، تابع انتقال سیگموئید، قاعده یادگیری لیونبرگ مارکوآرت و تعداد 4 نرون، با 55 درصد برای زیر گروه آموزشی و 25 و20 درصد به ترتیب برای هر یک از زیر گروه­های ارزیابی و آزمایشی بهترین برازش را به همراه داشت. ضریب تبین و ریشه متوسط مربع خطای داده‎ها بدست آمده برای مدل شبکه عصبی مصنوعی به ترتیب 9992/0 و 01099/0 و برای بهترین مدل ریاضی به ترتیب 9776/0 و 02758/0 بود.
نتیجه­گیری: این استنتاج وجود دارد که مدل شبکه عصبی مصنوعی به مراتب بهتر از مدل­های ریاضی می­تواند نسبت رطوبت را در اسنک سویا طی فرایندبرشته شدن مورد برازش قرار دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Modeling of Soybean Snack Roasting by Infrared Heating Using Artificial Neural Network (ANN)

نویسندگان [English]

  • H. Bagheri 1
  • M. Kashani Nejad 2
1 Ph.D. Graduate of the Faculty of Food Science & Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
2 Professor of the Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
چکیده [English]

ntroduction: Soybean is recognized as a good source of essential nutrients including protein, oil and several bioactive compounds and soybean has the potential to be used as snack and roasted nut, but most significant factor responsible for such limitation is probably considered as the characteristic flavor of soybean. Raw soybean has beany, bitter and astringent flavors. Therefore to improve its consumption, the particular flavor of raw soybean must be removed. Roasting might be considered as one of the best methods for this object. Materials and Methods: In this study, the infrared roaster is designed and soybean has been prepared and roasted according to the experimental condition. In this work, an artificial neural network model was developed for modeling of moisture content of soybean snack during infrared roasting. In order to do this, infrared lamp powers of 250, 350 and 450 W, distance between lamp and sample of 4, 7 and 10 cm and roasting time of 30 min were considered as the inputs and the amount of moisture ratio (MR) was estimated as the output. In addition, three different mathematical models were fitted to the experimental data and compared with the ANN model. Results: Based on these results, artificial neural network model for MR with one hidden layer, Sigmoid function as the transfer function, Levenberg-Marquardt method as the learning rule, 4 hidden neurons, 55% for training subset and 25 and 20 percent for each of validation and test subsets respectively had the best over fitting. The determination coefficient (R2) and root mean square error (RMSE) computed for the ANN model were 0.9992 and 0.01099and for the best mathematical model (Two term model) were 0.9776 and 0.02758, respectively. Conclusion: It was concluded that the artificial neural network model satisfied the work better than the mathematical model concerned with soybean snack roasting.

کلیدواژه‌ها [English]

  • ANN
  • Roasting
  • Snack
  • Soybean
Dondee, S., Meeso, N., Soponronnarit, S. & Siriamornpun, S. (2011). Reducing cracking and breakage of soybean grains under combined near-infrared radiation and fluidized-bed drying. Journal of Food Engineering, 104, 6–13.
Doymaz, A. (2015). Infrared drying kinetics and quality characteristics of carrot slices. Journal of Food Processing and Preservation, 39(6), 2738–2745.
 
Doymaz, I. (2012). Drying of pomegranate seeds using infrared radiation. Food Science and Biotechnology, 21, 1269-1275.
 
Izli, N., Yıldız, G., Unal, H., Isik, E. & Uylaser, V. (2014). Effect of different drying methods on drying characteristics, colour, total phenolic content and antioxidant capacity of Goldenberry (Physalis peruviana L.). International Journal of Food Science and Technology, 49, 9–17.
Karathanos, V. T. & Belessiotis, V. G. (1999). Application of a thin layer equation to drying data of fresh and semi-dried fruits. Journal of Agricultural Engineering Research, 74, 355–361
Kashaninejad, M., Mortazavi, A., Safekordi, A. & Tabil, L. G. (2007). Thin-layer drying characteristics and modeling of pistachio nuts. Journal of Food Engineering, 78, 98–108.
Kato, H., Doi, Y., Tsugita, T., Kosal, K., Kamiya, T. & Kurata, T. (1980). Changes in volatile flavour components of soybeans during roasting. Food Chemistry, 7, 87-94.
Kocabiyik, H. & Tezer, D. (2009). Drying of carrot slices using infrared radiation. International Journal of Food Science and Technology, 44: 953–959.
Lertworasirikul, S. & Saetan, S. (2010). Artificial neural network modeling of mass transfer during osmotic dehydration of kaffir lime peel. Journal of Food Engineering, 98, 214–223.
Madamba, I. (2011). Drying of eggplant slices in thin layers at different air temperatures. Journal of Food Process and Preservation, 35(2), 280-289.
Madamba, P. S., Driscoll, R. H. & Buckle, K. A. (1996). Thin-layer drying characteristics of garlic slices. Journal of Food Engineering, 29, 75±97.
Mayer, K. P. (1985). Infra-red roasting of nuts, particularly hazelnuts. Confectionary Production, 51, 313-314.
Ozdemir, M. & Devres, Y.O. (1999). The thin layer drying characteristics of hazelnuts during roasting. Journal of Food Engineering, 42, 225–233.
Palipane, K. B. & Driscoll, R. H. (1994). Thin-layer drying behavior of Macadamia in-shell nuts and kernels. Journal of Food Engineering, 23, 129-144.
Pan, Z., Yang, J., Brandl, M., McHugh, H. T. & Bingol, G. (2008). Infrared heating for improved safety and processing efficiency of dry-roasted almonds. Report for Almond Board of California, 1–20.
Salehi, F., Abbasi Shahkoh, Z. & Godarzi, M. (2014). Apricot Osmotic Drying Modeling Using Genetic Algorithm - Artificial Neural Network. Journal of Innovation in Food Science and Technology, (2), 25-32.
Sumnu, S. G. & Ozkoc, S. O. (2010). Infrared heating for food and agricultural processing. CRC Press, 203-236.
Togrul, I. T. & Pehlivan, D. (2002). Mathematical modeling of solar drying of apricots in thin layers. Journal of Food Engineering. 55(3), 209–216.
Wang, Z., Sun, J., Liao, X., Chen, F. & Zhao, G. (2007). Mathematical modeling on hot air drying of thin layer apple pomace. Food Research International, 40, 36-46.
Yaldiz, O., Ertekin, C. & Uzun, H. I. (2001). Mathematical modeling of thin layer solar drying of sultana grapes. Energy, 26, 457–465.
Yang, J., Bingol, G., Pan, Z., Brandl, M. T., McHugh, T. H. & Wang, H. (2010). Infrared heating for dry roasting and pasteurization of almonds. Journal of Food Engineering, 101, 273–280.