مقایسه اکسرژی گزینه های تولیدی در زنجیره تامین نانهای سنتی

نوع مقاله: مقاله علمی - پژوهشی

نویسندگان

1 دانشجوی دکتری مدیریت صنعتی، دانشکده علوم انسانی، دانشگاه خلیج فارس، بوشهر، ایران

2 دانشیار گروه مدیریت، دانشکده اقتصاد و علوم اجتماعی، دانشگاه شهید چمران اهواز، اهواز، ایران

چکیده

مقدمه: روند افزایشی ضایعات مواد غذایی، یکی از چالشهای جدی در اکثر کشورها به ویژه کشورهای در حال توسعه برای تامین نیازهای
غذایی کافی جامعه است. دراین تحقیق، عملکرد ترمودینامیکی دو زنجیره تولید نانهای سنتی مورد بررسی قرار میگیرد. این دو زنجیره شامل
زنجیره تولید نان تازه و زنجیره تولید نان با دو بار پخت )بدون ضایعات( میگردد.
مواد وروشها: محاسبات براساس فرآوری 1000 کیلوگرم خمیر برای هر هشت زنجیره نان انجام میگیرد. نانهای لواش، بربری، تافتون
و سنگک تولید شده به ترتیب جرمی در حدود 145 / 0 ، 410 / 0 ، 220 / 0 و 500 / 0 کیلوگرم داشتند. به منظور مقایسه اکسرژتیک برابر بین
زنجیرههای تولید نان، مقدار رطوبت در هر دو تکنولوژی برای تمام نانهای لواش، بربری، تافتون و سنگک به ترتیب 5 / 9 ، 1 / 34 ، 9 / 19 و
8 / 17 درصد در نظر گرفته شد. از نرم افزار ees و e! sankey برای تحلیل استفاده شده است.
یافتهها: جریانهای اکسرژی شیمیایی بسیار از اکسرژی فیزیکی مصرف شده در تمام زنجیرههای بررسی شده نان بزرگتر است. در زنجیره
تولید نانهای سنتی از لحاظ کارایی اکسرژی بترتیب نان لواش به روش دوبار پخت با مقدار ) 52 / 78 درصد(، نان سنگک با مقدار ) 06 / 76
درصد(، نان بربری با مقدار ) 64 / 70 درصد( و نان سنگک تازه با مقدار ) 29 / 70 درصد( بهترین کارایی اکسرژی را داشتند. کمترین مجموع
اکسرژی تلف شده و برگشتناپذیر در 1000 کیلوگرم خمیر فرآوری شده بترتیب در نان لواش به روش دوبار پخت با مقدار ) 2910 مگاژول(،
نان سنگک با مقدار) 3288 مگاژول(، نان سنگک تازه با مقدار) 3862 مگاژول( و نان تافتون دوبار پخت با مقدار ) 3921 مگاژول( مشاهده
گردید. پایینترین اتلاف اکسرژی ویژه و بهترین عملکرد ترمودینامیکی بترتیب در نان لواش دوبارپخت با مقدار ) 80 / 3 (، نان سنگک با مقدار
( 91 / 3 (، نان تافتون با مقدار ) 23 / 5 ( و نان بربری با مقدار ) 24 / 5( مشاهده شد. ترکیب تحلیل اکسرژی و بکارگیری آن در حوزه مدیریت
زنجیره تامین و علوم مدیریت از جمله نوآوری های تحقیق حاضر می باشد.
نتیجهگیری: اکثر اتلاف اکسرژی )غیر ماده( در مراحل پخت کردن، سرد کردن و منجمد کردن رخ میدهد. بنابراین هرگونه پیشرفت در
تولید نان سنتی میبایست در طراحی فرایندهای موثر ترمودینامیکی این سه مرحله و بکارگیری تکنولوژیهای مناسب متمرکز گردد.

کلیدواژه‌ها


عنوان مقاله [English]

Exergetic Comparison of Manufacturing Options in the Traditional Bread Supply Chain

نویسندگان [English]

  • A.A. Saminia 1
  • R. Ghasemiyeh 2
1 Ph. D. Student in Industrial Management, Faculty of Human Sciences, Persian Gulf University, Bushehr, Iran.
2 Associate Professor of Production and Operation Mangement, Department of Management, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
چکیده [English]

Introduction. The increasing trend of food waste is one of the serious challenges in most
countries, especially developing countries, to meet the sufficient food needs of society. In this
study, the thermodynamic performance of two traditional bread production chains is
examined. These two chains contain the fresh bread production and the double-baked bread
production chain (without waste).
Materials and Methods: The calculations are based on the processing of 1000 kg of dough
for all eight bread chains. Lavash, Barbari, Tafton and Sangak breads produced had a mass of
about 0.145, 0.410, 0.220 and 0.500 kg, respectively. In order to make an exergic comparison
between the bread production chains, the moisture content in both technologies for all Lavash,
Barbari, Tafton and Sangak breads were 9.5, 34.1, 19.9 and 17.8 percent, respectively. Data
analysis was done using two software “ees” and “ e! Sankey “.
Results: The chemical exergy flows were found to be much larger than the physical exergy
consumed in all the bread chains studied. In the traditional bread production chain, lavash
bread, baked twice, with the amount of 78.52%, Sangak with the amount of 76.06%, Barbari
with the amount of 70.64% and fresh Sangak bread with the amount of 70.29% had the best
exergy performance. The lowest total lost and irreversible exery were found in 1000 kg of
processed dough in the following breads: double-baked Lavash with the amount of (2910
megajoules), Sangak bread with the amount of (3288 megajoules), fresh Sangak bread with
the amount of (3862 megajoules). And Taftoon bread double-baked (3921 megajoules).
Lowest specific exergy loss and best thermodynamic performance was observed in doublebaked
Lavash bread (3.80), Sangak bread (3.91), Tafton bread (5.23) and Barbary bread
(5.24), respectively. Combining exergy analysis and its application in the field of supply chain
management and management sciences are among the innovations of the present study.
Conclusion: Most of the energy loss (non-material) occurs during the cooking, cooling, and
freezing stages. Therefore, any progress in the production of traditional bread should be
focused on the design of effective thermodynamic processes of these three stages and the use
of appropriate technologies.

کلیدواژه‌ها [English]

  • Exergy
  • Supply Chain Bread
  • Traditional Bread
Anon. (2001). Supportive and executive policies needed to increase wheat yield and production. Deputy Minister of Planning and Economy of the Ministry of Agriculture, Institute for Agricultural Planning and Economics Research, 9, 36 [In Persian].
Anon. (2013). Sonneveld, Bread improver. Sonplus bruin; http://www.sonneveld.com.
Anon. (2014). Sonneveld, Brown bun recipe. (2014). http://www.sonneveld.com/nl/recepten.
Anooshe, M. (2003). Causes of bread waste and ways to prevent it. Khornoosh Monthly Journal, 35 [In Persian].
Azizi, M. H., Mohamadi, M. & Kadivar, M. (2011). Investigating the production capacity of various traditional breads by mass industrial production. Iran State Trading Company (Grain Research Center), National project number: 88003 [In Persian].
Banasik, A., Argyris Kanellopoulos, G. D. H., Claassen Jacqueline. M., Bloemhof-Ruwaard, G. A. & Van der Vorst, J. (2017). Assessing alternative production options for eco-efficient food supply chains using multi-objective optimization. Sustainable Supply Chain Design and MGT, 250, 341–362.
Blair, D. & Sobal, J. (2006). Luxus consumption: Wasting food resources through overeating. Agriculture and Human Values, 23, 63-74.
Blonk, H. (2006). Sustainable bread production: phase analysis work document from Bakker Wiltink Bakery Gouda. The Netherlands: Blonk Milieu Advies.
Bosch, P., Modarresi, A. & Friedl, A. (2012). Comparison of combined ethanol and biogas polygeneration facilities using exergy analysis. Applied Thermal Engineering, 37, 19-29.
Dincer, I. & Ratlamwala, T. A. H. (2012). Importance of exergy for analysis, improvement, design, and assessment. Journal Recommendation Service, 2(3), 335-349.
Esfandiyari, J. (2012). Designing a system for managing and modernizing the bread industry in the traditional way. Iranian State Trading Company [In Persian].

Goesaert, H., Brijs, K., Veraverbeke, W. S., Courtin, C. M., Gebruers, K. & Delcour, J. A. (2005). Wheat flour constituents: how they impact bread quality, and how to impacttheir functionality. Trends in Food Science Technology, 16(1-3), 12-30.
Ghasemi, A., Raiatpishe, M. A., Haddadi, A. & Raiatpishe, S. (2017). Identification and prioritization of indicators in food supply chain sustainability, in the form of sustainable supply chain dimensions in agriculture and citrus. 9(4), 369-382 [In Persian].
Green, D. P. (2010). Sustainable Food Supply Chains. Journal of Aquatic Food Product Technology, 19 (2) , 55-56.
Hamdami, N., Pham, Q. T., Le-Bail, A. & Monteau, J. Y. (2007). Two-stage freezing of part baked breads - application and optimization. Journal of Food Engineering, 82(4), 418-26 [In Persian].
Jawad, H., Jaber, M. Y. & Nuwayhid, R. Y. (2017). Improving supply chainsustainability using exergy analysis. European Journal of Operational Research, doi: 10.1016/j.ejor. 10.007.
Kaviani, M. (2011). Designing a system to acquaint people with different types of bread. Iran State Trading Company (Grain Research Center). National project number: 1389/15/2009 and b. [In Persian].
Koroneos, C. J. &Nanaki, E. A. (2008). Energy and exergy utilization assessment of the Greek transport sector. Resour Conservation Recycl, 52, 700-706.
Kotas, T. J. (1995). The exergy method of thermal plant analysis. (FL): Krieger Publishing Company.
McKinnon, A. (2012). The role of road transport in a green transport system. In: Conference on the role of road transport in a green transport system, Brussels.
Nazghelichi, T., Kianmehr, M. K. & Aghbashlo, M. (2010). Thermodynamic Analysis of Fluidized Bed Drying of Carrot Cubes. Energy, 35(1), 4679.
Pyler, E. J. (1988). Baking science & technology. 3rd ed. Kansas City: Sosland Publishing.
Reed, G. & Nagodawithana, T. W. (1991). Yeast technology. 2nd ed. Van Nostrand Reinhold.
Rentian, W. (2013). Automatic 20e30 cases Carton box Erector. Packaging Technology Co., Ltd.
Reikert, L. (1974). The Efficiency of Energy-Utilization in Chemical Processes. Chemical Engineering Science, 29, 1613.
Rosen, M. A. (2002). Clarifying thermodynamic efficiencies and losses via exergy. Exergy, an International Journal, 2, 3-5.
Sahraeian, B., Mazaheri Tehrani, M., Taghipour, F. & Soleimani, M. (2014). The effect of mixing wheat flour with rice bran and soybean flour on physicochemical and sensory propertise of baguettes. Iranian Journal of Nutrition Science and Food Technology, 8(3).
Sajedi, S. N. & Masoumi, M. E. & Movagharnejad, K. (2015). Exergetic Improvement and Environmental Impact Assessment of Crude Oil Distillation Unit of Shazand-Arak Oil Refinery. International Journal of Exergy, 16(4), 464-480.
Saniea, N. & Ghazi, M. (2015). Exergy a new indicator in measuring research performance: a literature review. Journal of the School of Paramedical Sciences, Tehran University of Medical Sciences. Issue 9, PP 17-28. [InPersian].
SoofiAbadi, G. (2011). Comparative study of effective process indicators in the production of manual and mechanized types of bread. Aftab Publication [In Persian].
Szargut, J. (1989). Chemical exergies of the elements. Applied Energy, 32, 169-285.
Sciubba, E. & Wall, G. (2007). A brief commented history of exergy from the beginnings to 2004. Thermodynamics, 10(4), 187-192.
Tassou, S. A., De-Lille, G. & Ge, Y. T. (2009). Food transport refrigeration e approaches to reduce energy consumption and environmental impacts of road transport. Applied Thermal Engineering, 29(8-9), 1467-1477.
Therkelsen, P., Masanet, E. & Worrell, E. (2014). Energy efficiency opportunities in the U.S. commercial baking industry. Journal of Food Engineering, 130, 14-22.
Varteparvar, V., Kianmehr, M. H., Arabhosseini, A. & Hasanbeigi, S. R. (2013). Exegetic analysis of combined dry-liquid-dryer dryer. Iranian Journal of Chemistry and Chemical Engineering, 32 (2), 47-55 [In Persian].
Wiggins, C. &Cauvain, S. (2007). Proving, baking and cooling. Springer US: Technology of Breadmaking, 141-173.
Zisopoulos F. K., Moejes, S. N., Rossier-Miranda, F. J., Goot, A. J. & Boom, R. M. (2015). Exergetic comparison of food waste valorization in industrial bread production. Energy, 1-10.